1. Let $\phi: l^2 \to \mathbb{C}$ be a linear functional. Consider the standard basis $\{e_k\}$ of l^2 . To show that, there exists $y \in l^2$ such that $\phi(x) = \langle x, y \rangle$ for all $x \in l^2$. Let $x \in l^2$. For $N \in \mathbb{N}$, we define $S_N = \sum_{j=1}^N \langle x, e_j \rangle e_j$. $\therefore ||x - S_N|| \to 0$ as $N \to \infty$. Since, ϕ is linear we get $\phi(S_N) = \sum_{j=1}^N \langle x, e_j \rangle \phi(e_j)$. ϕ is bounded $\Rightarrow \phi(x) = \lim_{N \to \infty} \phi(S_N) = \sum_{j=1}^\infty \langle x, e_j \rangle \phi(e_j)$. Now, Choose $z = \sum_{j=1}^N \overline{\phi(e_j)} e_j$, then $\phi(z) = \sum_{j=1}^N |\phi(e_j)|^2$. $\sum_{j=1}^N |\phi(e_j)|^2 = \phi(z) \le ||\phi|| ||z|| = ||\phi|| \left(\sum_{j=1}^N |\phi(e_j)|^2\right)^{\frac{1}{2}}$ $\Rightarrow \left(\sum_{j=1}^N |\phi(e_j)|^2\right)^{\frac{1}{2}} \le ||\phi||.$

As, N is arbitrary, therefore $\{\phi(e_j)\}$ is square summable and we can define $y = \sum_{j=1}^{\infty} \overline{\phi(e_j)} e_j$. It is easy to check that $\phi(x) = \langle x, y \rangle$.

2. Let $T \in \mathcal{B}(X)$.

The approximate point spectrum of T is denoted by $\sigma_{AP}(T)$ and is defined as

 $\sigma_{AP}(T) := \{ \lambda \in \mathbb{C} : (\lambda I - T) \text{ is not bounded below} \}.$

Clearly $\sigma_{AP}(T) \subseteq \sigma(T)$, spectrum of T.

As the spectrum set $\sigma(T)$ is bounded by ||T||, it remains to show that $\sigma_{AP}(T)$ is closed i.e to show that it's complement is open in \mathbb{C} .

Let $\lambda \in \mathbb{C} \setminus \sigma_{AP}(T)$.

Therefore, there exists an $\alpha > 0$ such that $||(T - \lambda I)x|| \ge \alpha ||x||$ for all $x \in X$.

Let $\mu \in \mathbb{C}$ be arbitrary.

:. $||(T - \lambda I)x|| \le ||(T - \mu I)x|| + ||(\mu - \lambda)x||$

 $\Rightarrow \|(T - \mu I)x\| \ge (\alpha - |\mu - \lambda)| \|x\|.$

Therefore, $(T - \mu I)$ is bounded below for all $\mu \in \mathbb{C}$ such that $\alpha > |\mu - \lambda|$.

This shows that, the open ball $B_{\alpha}(\lambda) \subseteq \mathbb{C} \setminus \sigma_{AP}(T)$.

Therefore $\mathbb{C}\setminus\sigma_{AP}(T)$ is open and we are done.

3. We know that, if E is a convex subset of a locally convex space X, then the weak closure of E is same as the original closure of E (see the book "Functional Analysis" by W. Rudin Theorem 3.12). Consider $E = \text{span}\{x_n\}$, which is convex set in the Banach space X.

Let the sequence $\{x_n\} \subseteq E$ converges to x weakly i.e x is in the weak closure of E. Therefore, from the above theorem x is in the weak closure of E i.e there is a sequence $\{y_n\}$ in E such that $y_n \to x$ in the norm topology.

4. Let X be a Banach space.

Let $J_X : X \to X^{**}$ be the canonical map i.e $J_X(x)(f) = f(x)$ for $x \in X$ and $f \in X^*$. Let us assume that X if reflexive i.e the map J is surjective. Consider the cannonical map $J_{X^*}: X^* \to X^{***}$. We have to show that for $F \in X^{***}$ there exists an $f \in X^*$ such that $F = J_{X^*}(f)$. For any $\phi \in X^{**}$ there is $x_{\phi} \in X$ such that $J_X(x_{\phi}) = \phi$ as J is onto. Now, $J_{X^*}(F \circ J_X)(\phi) = \phi(F \circ J_X) = J_X(x_{\phi})(F \circ J_X) = (F \circ J_X)(x_{\phi}) = F(\phi)$. Therefore, we get $F = J_{X^*}(F \circ J_X)$ and we are done. Now, conversely let J_{X^*} is surjective. Let us assume that X is not reflexive i.e there is a $\phi(\neq 0) \in X^{**} \setminus J_X(X)$. As J_X is an isometry so $J_X(X)$ is closed subspace in X^{**} and therefore we can get $F \in X^{***}$ such that $F|_{J_X(X)} = 0$ and $F(\phi) \neq 0$ (see Lemma 4.6-7 in Kreyszig). But as J_{X^*} is surjective, there is an $f \in X^*$ such that $F = J_{X^*}(f)$. Now, for $x \in X$ we have $f(x) = J_X(x)(f) = J_{X^*}(f)(J_X(x)) = F(J_X(x)) = 0$, which is a contradiction.

5. Let the map $T: X \to Y$ is weak continuous where X, Y are banch spaces. By closed graph theorem if we can show that graph of T is closed then it is continuos. Let the sequence $(x_n, T(x_n))$ is convergent and converges to (x, y) where $\{x_n\}$ is a sequence in X, $x \in X, y \in Y$. Therefore, we have to show that y = T(x).

 $x_n \to x$ in norm $\Rightarrow x_n \to x$ weakly and as T is weakly continuous it follows that $T(x_n) \to T(x)$ weakly.

But from our assumption $T(x_n) \to y$ weakly, therefore from uniqueness of weak limit in a Banach space we get y = T(x) and therefore T is continuous.

For the solution of this question, see Theorem 2 (page number 170) and Theorem 18 (page number 18) from the book "Notes on Functional Analysis" by Rajendra Bhatia.

7. Let A, B ∈ B(H) and A is positive such that AB = BA. Now, A²B = A(AB) = A(BA) = (AB)A = (BA)A = BA² and in this way one can show that AⁿB = BAⁿ for any n ∈ N. Therefore, p(A)B = Bp(A) for any polynomial p. Let √A be the square root of A. Let p_n(A) be a sequence of polynomials in A which converges to √A strongly. (For the construction of the sequence of polynomials, see Theorem 3, page number-157 from the book "Notes on Functional Analysis" by Rajendra Bhatia). As p_n(A)B = Bp_n(A) and p_n(A) → √A strongly we have √AB = B√A.

- 8. This is "Hahn-Banach Theorem" and one can find it from any Functional Analysis book (ex- "Notes on Functional Analysis" by Rajendra Bhatia).
- 9. Let P_1, P_2 be two orthogonal projections on a Hilbert space \mathcal{H} . \therefore We have $P_i^2 = P_i^* = P_i$ for i = 1, 2. Also we have $(P_1 + P_2)^* = (P_1 + P_2)$.

Therefore
$$(P_1 + P_2)$$
 is an orthogonal projection $\iff (P_1 + P_2)^2 = (P_1 + P_2)^2$
 $\iff P_1P_2 + P_2P_1 = 0$

So, if $P_1P_2 = 0$, then $P_1 + P_2$ is an orthogonal projection. Now, conversely let $P_1 + P_2$ is a projection then $P_1P_2 + P_2P_1 = 0$. Multiplying the above thing by $(I - P_1)$ we get,

$$\begin{split} (I - P_1)(P_1P_2 + P_2P_1) &= 0 \\ \Rightarrow (I - P_1)P_2P_1 &= 0 \\ \Rightarrow P_2P_1 &= P_1P_2P_1 \\ \Rightarrow P_1P_2 &= (P_2P_1)^* = (P_1P_2P_1)^* = P_1P_2P_1 = P_2P_1 \\ \Rightarrow P_1P_2 &= 0 \text{ as } P_1P_2 + P_2P_1 = 0 \end{split}$$